CNN压缩:为反向传播添加mask(caffe代码修改)

神经网络压缩的研究近三年十分热门,笔者查阅到相关的两篇博客,博主们非常奉献的提供了源代码,但是发发现在使用gpu训练添加mask的网络上,稍微有些不顺,特此再进行详细说明。

此文是在 基于Caffe的CNN剪枝[1]和 Deep Compression阅读理解及Caffe源码修改[2] 的基础上修改的。

mask的结构?

[1]中使用的blob,存储mask。blob是一块数据块,在初始化时,需要为gpu上的数据块申请一块空间,故有Addmask()函数。AddMask()是blob.hpp中的blob的成员方法,需要在blob.cpp中实现。使用时将Addmask()添加在innerproduct.cpp和base_conv.cpp中,使得网络在setuplayer的过程中,为fc层和conv层多开辟一块存放mask的syncedmemory。blob有一系列需要实现的cpu_data()/mutable_cpu_data()等,初始化中改变mask的值时需要注意使用合理的方式。

InnerProductLayer.cpp

 void InnerProductLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
...
this->blobs_[].reset(new Blob<Dtype>(weight_shape));
this->blobs_[]->Addmask();
...}

base_conv.cpp:

 template <typename Dtype>
void BaseConvolutionLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
...
this->blobs_[].reset(new Blob<Dtype>(weight_shape));
this->blobs_[]->Addmask();
...}

修改blob.hpp和blob.cpp,添加成员mask_和相关的方法,在[1]文章的评论里作者已给出源代码。

[2]中使用layer结构定义mask,layer是相当于数据的一系列操作,或者说是blob的组合方法。

但是,想要实现在gpu上的操作,数据需要有gpu有关的操作。故此处采用[1]中的方法,将mask_添加到blob class中,实现mask_属性

mask的初始化?

在Caffe框架下,网络的初始化有两种方式,一种是调用filler,按照模型中定义的初始化方式进行初始化,第二种是从已有的caffemodel或者snapshot中读取相应参数矩阵进行初始化[1]。

1、filler的方法

在程序开始时,网络使用net.cpp中的Init()进行初始化,由输入至输出,依次调用各个层的layersetup,建立网络结构。如下所示是caffe中使用xavier方法进行填充的操作。

 virtual void Fill(Blob<Dtype>* blob) {
CHECK(blob->count());
int fan_in = blob->count() / blob->num();
int fan_out = blob->count() / blob->channels();
Dtype n = fan_in; // default to fan_in
if (this->filler_param_.variance_norm() ==
FillerParameter_VarianceNorm_AVERAGE) {
n = (fan_in + fan_out) / Dtype();
} else if (this->filler_param_.variance_norm() ==
FillerParameter_VarianceNorm_FAN_OUT) {
n = fan_out;
}
Dtype scale = sqrt(Dtype() / n);
caffe_rng_uniform<Dtype>(blob->count(), -scale, scale,
blob->mutable_cpu_data());
//Filler<Dtype>:: FillMask(blob);
CHECK_EQ(this->filler_param_.sparse(), -)
<< "Sparsity not supported by this Filler.";
}

filler的作用是,为建立的网络结构产生随机初始化值。

即使是从snapshot或caffemodel中读入数据,也执行随机填充操作。

2、从snapshot或caffemodel中读入数据

tools/caffe.cpp 中的phase:train可以从snapshot或caffemodel中提取参数,进行finetune。phase:test则可以从提取的参数中建立网络,进行预测过程。

这里笔者的网络结构是在pycaffe中进行稀疏化的,因此读入网络的proto文件是一个连接数不变、存在部分连接权值为零的网络。需要在读入参数的同时初始化mask_。因此修改blob.cpp中的fromproto函数:

 template <typename Dtype>
void Blob<Dtype>::FromProto(const BlobProto& proto, bool reshape) {
if (reshape) {
vector<int> shape;
if (proto.has_num() || proto.has_channels() ||
proto.has_height() || proto.has_width()) {
// Using deprecated 4D Blob dimensions --
// shape is (num, channels, height, width).
shape.resize();
shape[] = proto.num();
shape[] = proto.channels();
shape[] = proto.height();
shape[] = proto.width();
} else {
shape.resize(proto.shape().dim_size());
for (int i = ; i < proto.shape().dim_size(); ++i) {
shape[i] = proto.shape().dim(i);
}
}
Reshape(shape);
} else {
CHECK(ShapeEquals(proto)) << "shape mismatch (reshape not set)";
}
// copy data
Dtype* data_vec = mutable_cpu_data();
if (proto.double_data_size() > ) {
CHECK_EQ(count_, proto.double_data_size());
for (int i = ; i < count_; ++i) {
data_vec[i] = proto.double_data(i);
}
} else {
CHECK_EQ(count_, proto.data_size());
for (int i = ; i < count_; ++i) {
data_vec[i] = proto.data(i);
}
}
if (proto.double_diff_size() > ) {
CHECK_EQ(count_, proto.double_diff_size());
Dtype* diff_vec = mutable_cpu_diff();
for (int i = ; i < count_; ++i) {
diff_vec[i] = proto.double_diff(i);
}
} else if (proto.diff_size() > ) {
CHECK_EQ(count_, proto.diff_size());
Dtype* diff_vec = mutable_cpu_diff();
for (int i = ; i < count_; ++i) {
diff_vec[i] = proto.diff(i);
}
}
if(shape_.size()==||shape_.size()==){
Dtype* mask_vec = mutable_cpu_data();
CHECK(count_);
for(int i=;i<count_;i++)
mask_vec[i]=data_vec[i]?:;
}

在读入proto文件的同时,如果层的大小是4D——conv层、或2D——fc层时,初始化mask_为data_vec[i]?1:0。当层的大小是1Ds——pool或relu层时,不进行mask的初始化。

反向传播的修改?

1、修改blob的更新方式,添加math_funcion.hpp头文件。

 template <typename Dtype>
void Blob<Dtype>::Update() {
// We will perform update based on where the data is located.
switch (data_->head()) {
case SyncedMemory::HEAD_AT_CPU:
// perform computation on CPU
caffe_axpy<Dtype>(count_, Dtype(-),
static_cast<const Dtype*>(diff_->cpu_data()),
static_cast<Dtype*>(data_->mutable_cpu_data()));
caffe_mul<Dtype>(count_,
static_cast<const Dtype*>(mask_->cpu_data()),
static_cast<const Dtype*>(data_->cpu_data()),
static_cast<Dtype*>(data_->mutable_cpu_data()));
break;
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
// perform computation on GPU
caffe_gpu_axpy<Dtype>(count_, Dtype(-),
static_cast<const Dtype*>(diff_->gpu_data()),
static_cast<Dtype*>(data_->mutable_gpu_data()));
caffe_gpu_mul<Dtype>(count_,
static_cast<const Dtype*>(mask_->gpu_data()),
static_cast<const Dtype*>(data_->gpu_data()),
static_cast<Dtype*>(data_->mutable_gpu_data()));
#else
NO_GPU;
#endif
break;
default:
LOG(FATAL) << "Syncedmem not initialized.";
}
}

2、为cpu下的计算和gpu下的计算分别添加形如weight[i]*=mask[i];的运算方式。

inner_product_layer.cpp:

 void InnerProductLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
if (this->param_propagate_down_[]) {
const Dtype* top_diff = top[]->cpu_diff();
const Dtype* bottom_data = bottom[]->cpu_data();
// Gradient with respect to weight
Dtype* weight_diff = this->blobs_[]->mutable_cpu_diff();
vector<int> weight_shape();
if (transpose_) {
weight_shape[] = K_;
weight_shape[] = N_;
} else {
weight_shape[] = N_;
weight_shape[] = K_;
}
int count = weight_shape[]*weight_shape[];
const Dtype* mask = this->blobs_[]->cpu_mask();
for(int j=;j<count;j++)
weight_diff[j]*=mask[j]; if (transpose_) {
caffe_cpu_gemm<Dtype>(CblasTrans, CblasNoTrans,
K_, N_, M_,
(Dtype)., bottom_data, top_diff,
(Dtype)., weight_diff);
} else {
caffe_cpu_gemm<Dtype>(CblasTrans, CblasNoTrans,
N_, K_, M_,
(Dtype)., top_diff, bottom_data,
(Dtype)., weight_diff);
}
}
if (bias_term_ && this->param_propagate_down_[]) {
const Dtype* top_diff = top[]->cpu_diff();
// Gradient with respect to bias
caffe_cpu_gemv<Dtype>(CblasTrans, M_, N_, (Dtype)., top_diff,
bias_multiplier_.cpu_data(), (Dtype).,
this->blobs_[]->mutable_cpu_diff());
}
if (propagate_down[]) {
const Dtype* top_diff = top[]->cpu_diff();
// Gradient with respect to bottom data
if (transpose_) {
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasTrans,
M_, K_, N_,
(Dtype)., top_diff, this->blobs_[]->cpu_data(),
(Dtype)., bottom[]->mutable_cpu_diff());
} else {
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans,
M_, K_, N_,
(Dtype)., top_diff, this->blobs_[]->cpu_data(),
(Dtype)., bottom[]->mutable_cpu_diff());
}
}
}

inner_product_layer.cu:

 template <typename Dtype>
void InnerProductLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
if (this->param_propagate_down_[]) {
const Dtype* top_diff = top[]->gpu_diff();
const Dtype* bottom_data = bottom[]->gpu_data();
vector<int> weight_shape();
if (transpose_) {
weight_shape[] = K_;
weight_shape[] = N_;
} else {
weight_shape[] = N_;
weight_shape[] = K_;
}
int count = weight_shape[]*weight_shape[];
caffe_gpu_mul<Dtype>(count,static_cast<const Dtype*>(this->blobs_[]->mutable_gpu_diff()),static_cast<const Dtype*>(this->blobs_[]->gpu_mask()),static_cast<Dtype*>(this->blobs_[]->mutable_gpu_diff()));
Dtype* weight_diff = this->blobs_[]->mutable_gpu_diff();
//for(int j=0;j<count;j++)
//weight_diff[j]*=this->masks_[j];
// Gradient with respect to weight
if (transpose_) {
caffe_gpu_gemm<Dtype>(CblasTrans, CblasNoTrans,
K_, N_, M_,
(Dtype)., bottom_data, top_diff,
(Dtype)., weight_diff);
} else {
caffe_gpu_gemm<Dtype>(CblasTrans, CblasNoTrans,
N_, K_, M_,
(Dtype)., top_diff, bottom_data,
(Dtype)., weight_diff);
}
}
if (bias_term_ && this->param_propagate_down_[]) {
const Dtype* top_diff = top[]->gpu_diff();
// Gradient with respect to bias
caffe_gpu_gemv<Dtype>(CblasTrans, M_, N_, (Dtype)., top_diff,
bias_multiplier_.gpu_data(), (Dtype).,
this->blobs_[]->mutable_gpu_diff());
}
if (propagate_down[]) {
const Dtype* top_diff = top[]->gpu_diff();
// Gradient with respect to bottom data
if (transpose_) {
caffe_gpu_gemm<Dtype>(CblasNoTrans, CblasTrans,
M_, K_, N_,
(Dtype)., top_diff, this->blobs_[]->gpu_data(),
(Dtype)., bottom[]->mutable_gpu_diff());
} else {
caffe_gpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans,
M_, K_, N_,
(Dtype)., top_diff, this->blobs_[]->gpu_data(),
(Dtype)., bottom[]->mutable_gpu_diff());
}
}
}

至此修改完毕。

另外,caffe在新的版本中已添加sparse_参数,参考 https://github.com/BVLC/caffe/pulls?utf8=%E2%9C%93&q=sparse

上一篇:GPIB:永远不会被淘汰 (转载)


下一篇:Ubuntu离线安装包制作(转载)