机器学习基石 之 多分类(Multi-Classification)

多分类(Multi-Classification)

One-Versus-All (OVA) Decomposition

以逻辑回归为例,其思路是将其中一类和剩下的类分开,做二分类,并对全部类做次操作,这样便有了K个逻辑回归分类器,只要取其中概率最大hypothesis所对应的分类作为分类结果即可。

  • for \(k \in \mathcal { Y }\) , obtain \(\mathbf{w}_{[k]}\) by running logistic regression on

\[\mathcal { D } _ { [ k ] } = \left\{ \left( \mathbf { x } _ { n } , y _ { n } ^ { \prime } = 2 \left[\kern-0.15em\left[ y _ { n } = k \right]\kern-0.15em\right] - 1 \right) \right\} _ { n = 1 } ^ { N } \]

  • return \(g ( \mathbf { x } ) = \operatorname { argmax } _ { k \in \mathcal { Y } } \left( \mathbf { w } _ { [ k ] } ^ { T } \mathbf { x } \right)\)

其优缺点是:

  • pros: efficient ,can be coupled with any logistic regression-like approaches
    效率高,可以和类似逻辑回归的算法(输出概率的算法)结合
  • cons: often unbalanced D[k] when K large
    如果K太大会导致数据不平衡

One-Versus-One (OVO) Decomposition

其基本思路是将其中一类和剩下的类中的一类做二分类,然对全部分类器执行该操作(组合数就是分类器数),那么

  • for \(( k , \ell ) \in \mathcal { Y } \times \mathcal { Y }\) , obtain \(\mathbf { w }_ { [ k , l ] }\) by running logistic regression on

\[\mathcal { D } _ { [ k , \ell ] } = \left\{ \left( \mathbf { x } _ { n } , y _ { n } ^ { \prime } = 2 \left[\kern-0.15em\left[ y _ { n } = k \right]\kern-0.15em\right] - 1 \right) : y _ { n } = k \text { or } y _ { n } = \ell \right\} \]

  • return \(g ( \mathbf { x } ) = \text { tournament champion } \left\{ \mathbf { w } _ { [ k , \ell ] } ^ { T } \mathbf { x } \right\}\)

其优缺点是:

  • pros: efficient (‘smaller’ training problems), stable, can be coupled with any binary classification approaches
    更有效率更加稳定,可以结合任何二分类方法
  • cons: use \(O(K^2) \,\mathbf { w }_ { [ k , l ] }\),more space, slower prediction, more training。
    需要训练\(O(K^2)\) 个 \(,\mathbf { w }_ { [ k , l ] }\),占用更多的时间和空间。
上一篇:动态规划问题整理


下一篇:Towards Sparse Hierarchical Graph Classifiers