ROM, RAM, Flash Memory

ROM

Read-only memory (ROM) is a class of storage medium used in computers and other electronic devices. Data stored in ROM can only be modified slowly, with difficulty, or not at all, so it is mainly used to distribute firmware(software that is very closely tied to specific hardware, and unlikely to need frequent updates).

Strictly, read-only memory refers to memory that is hard-wired, such as diode matrix and the later mask ROM. Although discrete circuits can be altered (in principle), Integrated Circuits (ICs) cannot and are useless if the data is bad. The fact that such memory can never be changed is a large drawback; more recently, ROM commonly refers to memory that is read-only in normal operation, while reserving the fact of some possible way to change it.

Other types of non-volatile memory such as erasable programmable read only memory (EPROM) and electrically erasable programmable read-only memory (EEPROM or Flash ROM) are sometimes referred to, in an abbreviated way, as "read-only memory" (ROM); although these types of memory can be erased and re-programmed multiple times, writing to this memory takes longer and may require different procedures than reading the memory.[1] When used in this less precise way, "ROM" indicates a non-volatile memory which serves functions typically provided by mask ROM, such as storage of program code and nonvolatile data.

RAM

Random-access memory (RAM /ræm/) is a form of computer data storage. A random-access memory device allows data items to be read and written in approximately the same amount of time regardless of the order in which data items are accessed.[1] In contrast, with other direct-access data storage media such as hard disksCD-RWsDVD-RWs and the older drum memory, the time required to read and write data items varies significantly depending on their physical locations on the recording medium, due to mechanical limitations such as media rotation speeds and arm movement delays.

Today, random-access memory takes the form of integrated circuits. RAM is normally associated with volatile types of memory (such as DRAM memory modules), where stored information is lost if power is removed, although many efforts have been made to develop non-volatile RAM chips.[2] Other types of non-volatile memory exist that allow random access for read operations, but either do not allow write operations or have limitations on them. These include most types of ROM and a type of flash memorycalled NOR-Flash.

The two main forms of modern RAM are static RAM (SRAM) and dynamic RAM (DRAM). In SRAM, a bit of data is stored using the state of a six transistor memory cell. This form of RAM is more expensive to produce, but is generally faster and requires less power than DRAM and, in modern computers, is often used as cache memory for the CPU. DRAM stores a bit of data using a transistor and capacitor pair, which together comprise a DRAM memory cell. The capacitor holds a high or low charge (1 or 0, respectively), and the transistor acts as a switch that lets the control circuitry on the chip read the capacitor's state of charge or change it. As this form of memory is less expensive to produce than static RAM, it is the predominant form of computer memory used in modern computers.

Flash Memory

Flash memory is an electronic non-volatile computer storage medium that can be electrically erased and reprogrammed. Flash memory was developed from EEPROM (electrically erasable programmable read-only memory). There are two main types of flash memory, which are named after the NAND and NOR logic gates.

Whereas EPROMs had to be completely erased before being rewritten, NAND type flash memory may be written and read in blocks (or pages) which are generally much smaller than the entire device. NOR type flash allows a single machine word (byte) to be written—​to an erased location—​or read independently.

The NAND type is primarily used in memory cardsUSB flash drivessolid-state drives (those produced in 2009 or later), and similar products, for general storage and transfer of data. NAND or NOR flash memory is also often used to store configuration data in numerous digital products, a task previously made possible by EEPROM or battery-powered static RAM. One significant disadvantage of flash memory is the finite number of read/write cycles in a specific block.[citation needed]

Although flash memory is technically a type of EEPROM, the term "EEPROM" is generally used to refer specifically to non-flash EEPROM which is erasable in small blocks, typically bytes.[citation needed] Because erase cycles are slow, the large block sizes used in flash memory erasing give it a significant speed advantage over non-flash EEPROM when writing large amounts of data. As of 2013, flash memory costs much less than byte-programmable EEPROM and has become the dominant memory type wherever a system requires a significant amount of non-volatile, solid-state storage.

上一篇:固态硬盘SSD与闪存(Flash Memory)


下一篇:SPI Flash Memory 芯片手册阅读