PageRank在Hadoop和spark下的实现以及对比

关于PageRank的地位,不必多说。
主要思想:对于每个网页,用户都有可能点击网页上的某个链接,例如
A:B,C,D
B:A,D
C:A
D:B,C
由这个我们可以得到网页的转移矩阵
     A    B    C    D
A  0    1/2  1    0
B 1/3   0    0    0
C 1/3  1/2  0    0
D 1/3  0     0    1/2
 
Aij表示网页j到网页i的转移概率。假设起始状态每个用户对ABCD四个网站的点击概率相同都是0.25,那么各个网站第一次被访问的概率为(0.25,0.25,0.25,0.25),第二次访问考虑到在页面跳转,利用转移矩阵对于网站A的概率为(0,1/2,1,0)*(0.25,0.25,0.25,0.25)T,一次类推,经过若干次迭代会收敛到某个值。但是考虑到有些链接是单链即没有别的链接只想他,他也不指向别的链接,以及有些链接是自己指向自己,那么上述的方式将无法收敛。所以后面加了一个阻尼系数一般取0.85,至于为什么是这样,挺复杂的证明。
最后的公式为alaph=factor*matrix*(alaph)T+(1-facotr)/n*
详细的介绍可以参考:http://blog.jobbole.com/71431/
接下来便是对比Hadoop和spark了。这里只是单纯的讨论两个环境下编程的效率,不讨论性能。
Hadoop:
输入的文件:
A 0.25:B,C,D
B 0.25:A,D
C 0.25:A
D 0.25:B,C
这里得先说一句,之所以加了0.25是因为初始的概率为1/n,而n为网站数,这里统计网站数又得需要一个MapReduce来实现,所以作罢,权当n是手工输入的。
由于每次迭代后的结果只能放在文件中,所以这里花了很多时间在规范如何输出,以及map和reduce之间如何传值的问题。
在map中,我们要做的是从输入文件中获取alaph和每个网站的转移概率。例如
A 0.25:B,C,D
B的转移概率为1/3而且是从A转向B的,所以输出的是<"B","link:A 0.333">link表示这是个转移概率,A表示是从A出发的
alaph的表示:<"B","alaph: A 0.25">这里的A表示这个alaph值对应这A。
由于我们这里迭代后的输入文件都是从输出文件中获取,所以我们需要将输出文件搞的和一开始输入文件一样,所以在map阶段需要输出<"A","content:B,C,D">方便reduce输出和输入文件一样格式的输出。
在reduce阶段,此时对于键值B而言,会收到如下
<"B","link:A 0.333">
<"B","link:D 0.5">
<"B","alaph: A 0.25">
<"B","alaph: D 0.25">
<"B","content:A,D">
我们根据不同的单词,将value整合。这的alaph=0.333*0.25+0.5*0.25,接着再加上阻尼系数等,得到最后的alaph值。然后利用content对应的value,最后输出<"B:0.375","A,D">
这样迭代若干次。
附上代码:
 package org.apache.hadoop.PageRank;

 import java.util.ArrayList;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class PageRank { public static void run(){ } public static void main(String[] args) throws Exception {
double factor=0;
if(args.length>1){
factor=Double.parseDouble(args[0]);
}else{
factor=0.85;
}
String input="hdfs://10.107.8.110:9000/PageRank_input";
String output="hdfs://10.107.8.110:9000/PageRank/output";
ArrayList<String> pathList=new ArrayList<String>();
for(int i=0;i<20;i++){
Configuration conf = new Configuration();
conf.set("num","4");
conf.set("factor",String.valueOf(factor));
Job job = Job.getInstance(conf, "PageRank");
job.setJarByClass(org.apache.hadoop.PageRank.PageRank.class);
job.setMapperClass(MyMapper.class);
job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.setInputPaths(job, new Path(input));
FileOutputFormat.setOutputPath(job, new Path(output));
input=output;
pathList.add(output);
output=output+1; System.out.println("the "+i+"th iterator is finished");
job.waitForCompletion(true);
}
for(int i=0;i<pathList.size()-1;i++){
Configuration conf=new Configuration();
Path path=new Path(pathList.get(i));
FileSystem fs=path.getFileSystem(conf);
fs.delete(path,true);
}
} } package org.apache.hadoop.PageRank; import java.io.IOException;
import java.util.HashMap;
import java.util.Map; import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; public class MyMapper extends Mapper<LongWritable, Text, Text, Text> { public void map(LongWritable ikey, Text ivalue, Context context)
throws IOException, InterruptedException {
String[] line=ivalue.toString().split(":");
String content=line[1];
int num=content.split(",").length;
String word=line[0].split(" ")[0];
String alaph=line[0].split(" ")[1];
context.write(new Text(word),new Text("content:"+content));
for(String w:content.split(",")){
context.write(new Text(w),new Text("link:"+word+" "+String.valueOf(1.0/num)));
context.write(new Text(w),new Text("alaph:"+word+" "+alaph));
}
} } package org.apache.hadoop.PageRank; import java.io.IOException;
import java.util.HashMap;
import java.util.Map; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class MyReducer extends Reducer<Text, Text, Text, Text> { public void reduce(Text _key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
// process values
Configuration conf=context.getConfiguration();
double factor=Double.parseDouble(conf.get("factor"));
int num=Integer.parseInt(conf.get("num")); Map<String,Double> alaph=new HashMap<String,Double>();
Map<String,Double> link=new HashMap<String,Double>(); String content="";
for (Text val : values) {
String[] line=val.toString().split(":");
if(line[0].compareTo("content")==0){
content=line[1];
}else {
String[] s=line[1].split(" ");
double d=Double.parseDouble(s[1]);
if(line[0].compareTo("alaph")==0){
alaph.put(s[0],d);
}else if(line[0].compareTo("link")==0){
link.put(s[0],d);
}
}
}
double sum=0;
for(Map.Entry<String,Double> entry:alaph.entrySet()){
sum+=link.get(entry.getKey())*entry.getValue();
} System.out.println(" ");
System.out.println("sum is "+sum);
System.out.println(" ");
double result=factor*sum+(1-factor)/num;
context.write(_key,new Text(String.valueOf(result)+":"+content)); } }
 
 
 
 
我们可以看出,其实在MapReduce中我们将大把的精力花在了map的输出上,而之所以这样是因为我们不能直接利用他的结果,并且为了能迭代,我们又只能格式化输出,如果数据很多的,那么在map阶段将有很多的资源需要传递。总而言之,Hadoop让我们将大部分精力花在不该花的地方。
 
接下来看spark 。我这里用的是python,在pyspark下运行。输入文件:
A:B,C,D
B:A,D
C:A
D:B,C
先看代码
def f(x):
links=x[1][0]
rank=x[1][1]
n=len(links.split(","))
result=[]
for s in links.split(","):
result.append((s,rank*1.0/n))
return result file="hdfs://10.107.8.110:9000/spark_test/pagerank.txt" data=sc.textFile(file)
link=data.map(lambda x:(x.split(":")[0],x.split(":")[1]))
n=data.count()
rank=link.mapValues(lambda x:1.0/n) for i in range(10):
rank=link.join(rank).flatMap(f).reduceByKey(lambda x,y:x+y).mapValues(lambda x:0.15/n+0.85*x)
直接分析,data=sc.textFile(file)从hdfs中获取text文件。
通过data.collect()可以发现内容为
 PageRank在Hadoop和spark下的实现以及对比
PageRank在Hadoop和spark下的实现以及对比
我们需要将其转换为键值对,那么这里就需要map函数
此时lambda x的x值为字符串,所以通过:将其分割
PageRank在Hadoop和spark下的实现以及对比
 
PageRank在Hadoop和spark下的实现以及对比
接着通过n=data.count()我们可以直接获得网站数,而不必手动输入
 PageRank在Hadoop和spark下的实现以及对比
PageRank在Hadoop和spark下的实现以及对比
 
接着通过link.join(rank),让link和rank根据key而join进来
PageRank在Hadoop和spark下的实现以及对比
link.join(rank).flatMap(f)用于提取键值,由于输入的是(page,(links,rank)),所以这里定义了一个函数f用于分割links,让links分割成若干个link,并加上rank输出。
PageRank在Hadoop和spark下的实现以及对比
最后只需将其按照key值进行reduce即可
link.join(rank).flatMap(f).reduceByKey(lambda x,y:x+y),这样就会将相同key的概率相加,得到alaph,接着再加上阻尼系数即可
 
PageRank在Hadoop和spark下的实现以及对比
link.join(rank).flatMap(f).reduceByKey(lambda x,y:x+y).mapValues(lambda x:0.15/n+0.85*x)这样就是一个完整的计算
通过迭代若干次就可以了。
从代码量上说(虽然python比java简明)spark的确是比Hadoop好很多。原因也说了,1每次迭代不必将结果存放在文件中 2提供了更多的范式
上一篇:Luogu P4321 随机漫游


下一篇:Linux下NAT模式和桥接模式的网络配置