【学习笔记】数理统计习题八

Q1: Let X 1 , … , X n X_1,\dots,X_n X1​,…,Xn​ be an iid sample of Possion distribution with parameter λ > 0 \lambda>0 λ>0. Find an approximate 100 ( 1 − α ) % 100(1-\alpha)\% 100(1−α)% confidence interval for λ \lambda λ.

解: 已知泊松分布的均值和方差均为 λ \lambda λ, X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1​,X2​,⋯,Xn​是一个样本,因为样本容量 n n n较大,由中心极限定理,知
∑ i = 1 n X i − n λ n λ = n X ˉ − n λ n λ \frac{\displaystyle\sum_{i=1}^nX_i-n\lambda}{\sqrt{n\lambda}}=\frac{n\bar{X}-n\lambda}{\sqrt{n\lambda}} nλ ​i=1∑n​Xi​−nλ​=nλ ​nXˉ−nλ​​ 近似地服从 N ( 0 , 1 ) N(0,1) N(0,1)分布,于是有
P { − z 1 − α / 2 < n X ˉ − n λ n λ < z 1 − α / 2 } = 1 − α P\{-z_{1-\alpha/2}<\frac{n\bar{X}-n\lambda}{\sqrt{n\lambda}}<z_{1-\alpha/2}\}=1-\alpha P{−z1−α/2​<nλ ​nXˉ−nλ​<z1−α/2​}=1−α​ 而不等式
− z 1 − α / 2 < n X ˉ − n λ n λ < z 1 − α / 2 -z_{1-\alpha/2}<\frac{n\bar{X}-n\lambda}{\sqrt{n\lambda}}<z_{1-\alpha/2} −z1−α/2​<nλ ​nXˉ−nλ​<z1−α/2​​ 等价于
n λ 2 − ( 2 n X ˉ + z 1 − α / 2 2 ) λ + n X ˉ 2 < 0 n\lambda^2-(2n\bar{X}+z_{1-\alpha/2}^2)\lambda+n\bar{X}^2<0 nλ2−(2nXˉ+z1−α/22​)λ+nXˉ2<0​ 记
p 1 = 1 2 a ( − b − b 2 − 4 a c ) p 2 = 1 2 a ( − b + b 2 − 4 a c ) p_1=\frac{1}{2a}(-b-\sqrt{b^2-4ac})\\ p_2=\frac{1}{2a}(-b+\sqrt{b^2-4ac}) p1​=2a1​(−b−b2−4ac ​)p2​=2a1​(−b+b2−4ac ​)​ 此处 a = n , b = − ( 2 n X ˉ + z 1 − α / 2 2 ) , c = n λ 2 a=n,b=-(2n\bar{X}+z_{1-\alpha/2}^2),c=n\lambda^2 a=n,b=−(2nXˉ+z1−α/22​),c=nλ2,

​ 于是综上可得, λ \lambda λ的一个置信水平为 1 − α 1-\alpha 1−α的置信区间为 ( p 1 , p 2 ) (p_1,p_2) (p1​,p2​)

Q2: Suppose that an event A A A was observed 36 times out of 120 independent experiments. Use CLT to find an approximate 95 % 95\% 95% confidence interval for P ( A ) P(A) P(A).

解: 已知题目中的分布为二项分布,则分布律为
f ( x ; p ) = p x ( 1 − p ) 1 − x   ,   x = 0 , 1 f(x;p)=p^x(1-p)^{1-x}\ ,\ x=0,1 f(x;p)=px(1−p)1−x , x=0,1​ 其中 p = P ( A ) p=P(A) p=P(A),已知二项分布的均值和方差分别为
μ = p   ,   σ 2 = p ( 1 − p ) \mu=p\ ,\ \sigma^2=p(1-p) μ=p , σ2=p(1−p)​ 设 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1​,X2​,⋯,Xn​是一个样本,由中心极限定理,知
∑ i = 1 n X i − n p n p ( 1 − p ) = n X ˉ − n p n p ( 1 − p ) \frac{\displaystyle\sum_{i=1}^nX_i-np}{\sqrt{np(1-p)}}=\frac{n\bar{X}-np}{\sqrt{np(1-p)}} np(1−p) ​i=1∑n​Xi​−np​=np(1−p) ​nXˉ−np​​ 近似地服从 N ( 0 , 1 ) N(0,1) N(0,1)分布,于是有
P { − z 1 − α / 2 < n X ˉ − n p n p ( 1 − p ) < z 1 − α / 2 } = 1 − α P\{-z_{1-\alpha/2}<\frac{n\bar{X}-np}{\sqrt{np(1-p)}}<z_{1-\alpha/2}\}=1-\alpha P{−z1−α/2​<np(1−p) ​nXˉ−np​<z1−α/2​}=1−α​ 而不等式
− z 1 − α / 2 < n X ˉ − n p n p ( 1 − p ) < z 1 − α / 2 -z_{1-\alpha/2}<\frac{n\bar{X}-np}{\sqrt{np(1-p)}}<z_{1-\alpha/2} −z1−α/2​<np(1−p) ​nXˉ−np​<z1−α/2​​ 等价于
( n + z 1 − α / 2 2 ) p 2 − ( 2 n X ˉ + z 1 − α / 2 2 ) p + n X ˉ 2 < 0 (n+z_{1-\alpha/2}^2)p^2-(2n\bar{X}+z_{1-\alpha/2}^2)p+n\bar{X}^2<0 (n+z1−α/22​)p2−(2nXˉ+z1−α/22​)p+nXˉ2<0​ 记
p 1 = 1 2 ( n + z 1 − α / 2 2 ) ( 2 n X ˉ + z 1 − α / 2 2 − 4 n X ˉ z 1 − α / 2 2 ( 1 − X ˉ ) + z 1 − α / 2 4 ) = 1 2 a ( − b − b 2 − 4 a c ) p_1=\frac{1}{2(n+z_{1-\alpha/2}^2)}\Big(2n\bar{X}+z_{1-\alpha/2}^2-\sqrt{4n\bar{X}z_{1-\alpha/2}^2(1-\bar{X})+z_{1-\alpha/2}^4}\Big)=\frac{1}{2a}(-b-\sqrt{b^2-4ac})\\ p1​=2(n+z1−α/22​)1​(2nXˉ+z1−α/22​−4nXˉz1−α/22​(1−Xˉ)+z1−α/24​ ​)=2a1​(−b−b2−4ac ​) p 2 = 1 2 ( n + z 1 − α / 2 2 ) ( 2 n X ˉ + z 1 − α / 2 2 + 4 n X ˉ z 1 − α / 2 2 ( 1 − X ˉ ) + z 1 − α / 2 4 ) = 1 2 a ( − b + b 2 − 4 a c ) p_2=\frac{1}{2(n+z_{1-\alpha/2}^2)}\Big(2n\bar{X}+z_{1-\alpha/2}^2+\sqrt{4n\bar{X}z_{1-\alpha/2}^2(1-\bar{X})+z_{1-\alpha/2}^4}\Big)=\frac{1}{2a}(-b+\sqrt{b^2-4ac}) p2​=2(n+z1−α/22​)1​(2nXˉ+z1−α/22​+4nXˉz1−α/22​(1−Xˉ)+z1−α/24​ ​)=2a1​(−b+b2−4ac ​)​ 此处 a = n + z 1 − α / 2 2 , b = − ( 2 n X ˉ + z 1 − α / 2 2 ) , c = n X ˉ 2 a=n+z_{1-\alpha/2}^2,b=-(2n\bar{X}+z_{1-\alpha/2}^2),c=n\bar{X}^2 a=n+z1−α/22​,b=−(2nXˉ+z1−α/22​),c=nXˉ2,

​ 又由题目可知 α = 0.05 , X ˉ = 0.3 \alpha=0.05,\bar{X}=0.3 α=0.05,Xˉ=0.3,则 z 1 − α / 2 = 1.96 z_{1-\alpha/2}=1.96 z1−α/2​=1.96

​ 因此,可计算得 a = 123.84 , b = − 75.84 , c = 10.8 a=123.84,b=-75.84,c=10.8 a=123.84,b=−75.84,c=10.8,

​ 于是
p 1 = 1 2 a ( − b − b 2 − 4 a c ) = 0.225 p_1=\frac{1}{2a}(-b-\sqrt{b^2-4ac})=0.225\\ p1​=2a1​(−b−b2−4ac ​)=0.225 p 2 = 1 2 a ( − b + b 2 − 4 a c ) = 0.387 p_2=\frac{1}{2a}(-b+\sqrt{b^2-4ac})=0.387 p2​=2a1​(−b+b2−4ac ​)=0.387​ 故得 P ( A ) P(A) P(A)的一个置信水平为0.95的近似置信区间为 ( 0.225 , 0.387 ) (0.225,0.387) (0.225,0.387)
另外,不等式也可以解为
P L = 1 1 + z 1 − α / 2 2 / n ( X ˉ + z 1 − α / 2 2 2 n − X ˉ ( 1 − X ˉ ) z 1 − α / 2 2 n + ) P_L=\frac{1}{1+z_{1-\alpha/2}^2/n}\Big(\bar{X}+\frac{z_{1-\alpha/2}^2}{2n}-\sqrt{\frac{\bar{X}(1-\bar{X})z_{1-\alpha/2}^2}{n}+\Big)} PL​=1+z1−α/22​/n1​(Xˉ+2nz1−α/22​​−nXˉ(1−Xˉ)z1−α/22​​+)

Q3: Let X 1 , … , X n X_1,\dots,X_n X1​,…,Xn​ be an iid sample from a distribution with CDF F ( x ) F(x) F(x).

(a) Show that the empirical CDF F ^ n ( x ) \hat F_n(x) F^n​(x) is an unbiased estimate of F ( x ) F(x) F(x) for any fixed x ∈ R x\in\mathbb{R} x∈R.

(b) Find the variance of F ^ n ( x ) \hat F_n(x) F^n​(x).

© Now suppose that F ( x ) = 1 − exp ⁡ ( − λ x ) F(x)=1-\exp(-\lambda x) F(x)=1−exp(−λx) for x > 0 x>0 x>0 and 0 0 0 otherwise. Inspecting whether the variance of F ^ n ( x ) \hat F_n(x) F^n​(x) attains the lower bound of Cramer-Rao inequality for estimating F ( x ) F(x) F(x) with fixed x > 0 x>0 x>0. (In fact, there exists a better unbiased estimator for F ( x ) F(x) F(x) than the empirical CDF for this case.)

Q4: True or false, and state why:

  1. The significance level of a statistical test is equal to the probability that the
    null hypothesis is true.
  2. If the significance level of a test is decreased, the power of the test would be expected to
    increase.
  3. The probability that the null hypothesis is falsely rejected is equal to the power
    of the test.
  4. A type I error occurs when the test statistic falls in the rejection region of the
    test.

Q5: A coin is thrown independently 10 times to test the hypothesis that the probability of heads is 1 / 2 1/2 1/2 versus the alternative that the probability is not 1 / 2 1/2 1/2. The test rejects
if either 0 or 10 heads are observed.

  1. What is the significance level of the test?
  2. If in fact the probability of heads is 0.1 0.1 0.1, what is the power of the test?

Q6: Suppose that X 1 , X 2 , X 3 X_1,X_2,X_3 X1​,X2​,X3​ are samples of Bernoulli B ( 1 , p ) B(1,p) B(1,p) population. For testing the hypothesis H 0 : p = 1 / 2   v s .   H 1 : p = 3 / 4 H_0:p=1/2\ vs.\ H_1:p=3/4 H0​:p=1/2 vs. H1​:p=3/4, we use a rejection region:
W = { ( x 1 , x 2 , x 3 ) : x 1 + x 2 + x 3 ≥ 2 } . W=\{(x_1,x_2,x_3):x_1+x_2+x_3\ge 2\}. W={(x1​,x2​,x3​):x1​+x2​+x3​≥2}.

  1. What are the probabilities of the two types of errors for W W W?
  2. What is the power of the test?
上一篇:Linux C 编程学习第四天_结构体&数据抽象


下一篇:后门木马整理